current location : Home » categoires :   

Analysis and Troubleshooting of Seven Common Failures in Stainless Steel Submersible Pumps

Analysis and Troubleshooting of Seven Common Failures in Stainless Steel Submersible Pumps

 

Stainless steel submersible pumps are widely used in drainage applications across industries such as pharmaceuticals, environmental protection, food, chemical, and power due to their characteristics of corrosion resistance, hygiene, energy efficiency, environmental friendliness, non-clogging, high flow rate, and strong passage capability. Anhui Shengshi Datang will study together with everyone.

I. Common Causes and Solutions for Insufficient Flow or No Water Output in Stainless Steel Submersible Pumps:

1. The installation height of the pump is too high, resulting in insufficient impeller immersion depth and reduced water output. Control the allowable deviation of the installation elevation and avoid arbitrary adjustments.

2. The pump rotates in the reverse direction. Before trial operation, run the motor without load to ensure the rotation direction matches the pump. If this occurs during operation, check whether the power phase sequence has changed.

3. The outlet valve cannot open. Inspect the valve and perform regular maintenance.

4. The outlet pipeline is blocked, or the impeller is clogged. Clear blockages in the pipeline and impeller, and regularly remove debris from the reservoir.

5. The lower wear ring of the pump is severely worn or blocked by debris. Clean the debris or replace the wear ring.

6. The density or viscosity of the pumped liquid is too high. Identify the cause of the change in liquid properties and address it.

7. The impeller is detached or damaged. Reinforce or replace the impeller.

8. When multiple pumps share a common discharge pipeline, a check valve is not installed or the check valve is not sealing properly. Install or replace the check valve after inspection.

II. Causes of Abnormal Vibration and Instability During Operation of Stainless Steel Submersible Pumps:

1. The anchor bolts of the pump base are not tightened or have become loose. Tighten all anchor bolts evenly.

2. The outlet pipeline lacks independent support, causing pipeline vibration to affect the pump. Provide independent and stable support for the outlet pipeline, ensuring the pump’s outlet flange does not bear weight.

3. The impeller is unbalanced, damaged, or loosely installed. Repair or replace the impeller.

4. The upper or lower bearings of the pump are damaged. Replace the bearings.

III. Causes of Overcurrent, Motor Overload, or Overheating in Stainless Steel Submersible Pumps:

1. The operating voltage is too low or too high. Check the power supply voltage and adjust it.

2. There is friction between rotating and stationary parts inside the pump, or between the impeller and the seal ring. Identify the location of the friction and resolve the issue.

3. Low head and high flow cause a mismatch between the motor power and the pump characteristics. Adjust the valve to reduce the flow, ensuring the motor power matches the pump.

4. The pumped liquid has high density or viscosity. Investigate the cause of the change in liquid properties and adjust the pump’s operating conditions.

5. The bearings are damaged. Replace the bearings at both ends of the motor.

IV. Causes and Solutions for Low Insulation Resistance in Stainless Steel Submersible Pumps:

1. The cable ends were submerged during installation, or the power or signal cable was damaged, allowing water ingress. Replace the cable or signal wire, and dry the motor.

2. The mechanical seal is worn or not properly installed. Replace the upper and lower mechanical seals, and dry the motor.

3. The O-rings have aged and lost their function. Replace all sealing rings and dry the motor.

V. Causes and Solutions for Visible Water Leakage in Pipes or Flange Connections of Stainless Steel Submersible Pump Systems:

1. The pipeline itself has defects and was not pressure-tested.

2. The gasket connection at the flange joint was not properly handled.

3. The flange bolts were not tightened correctly. Repair or replace defective pipes, realign misaligned pipes, and ensure bolts are inserted and tightened freely. After installation, conduct a pressure and leakage test on the entire system. Replace components as necessary.

VI. Internal Leakage in Stainless Steel Submersible Pumps:

Leakage in the pump can lead to insulation failure, bearing damage, alarm activation, and forced shutdown. The main causes include failure of dynamic seals (mechanical seals) or static seals (cable inlet seals, O-rings), and damage to power or signal cables allowing water ingress. Alarms such as water immersion, leakage, or humidity may trigger shutdowns. Before installation, inspect the quality of all sealing components. Ensure proper contact between sealing surfaces during installation. Before operation, check the motor’s phase-to-phase and ground insulation resistance, and ensure all alarm sensors are functional. If leakage occurs during operation, replace all damaged seals and cables, and dry the motor. Do not reuse disassembled seals or cables.

VII. Reverse Rotation After Shutdown of Stainless Steel Submersible Pumps:

1. Reverse rotation occurs after the pump motor is powered off, mainly due to failure of the check valve or flap valve in the outlet pipeline.

2. Before installation, inspect the check valve for correct orientation and ensure the flap valve is centered and operates flexibly. Regularly inspect the check valve or flap valve during operation, and repair or replace damaged components with quality parts.

 

prev 9 Essential Safety Points to Understand Before Using High-Temperature Magnetic Drive Pumps

next Performance Characteristics of Fluoroplastic Self-Priming Pumps